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Although flow photochemistry has significant potential in
advancing sustainable processing, there are substantial hur-
dles to attaining this. Development in three key areas over the
past 3 years are discussed here: 1) light source technology; 2)
reactor design; and 3) process understanding and intensifica-
tion. A small number of illustrative examples provide an insight
on the benefits that can be accessed through advances in
these areas. More in-depth knowledge and experimentation
around wavelength dependence can enhance efficiency and
selectivity in transformations. Reactors capable of handling
solid– liquid reactions can allow reliable processing of metal-
free and recyclable catalyst systems. Concentrating and
accelerating transition-metal/photoredox coupling methodolo-
gies make these processes increasingly attractive. Continua-
tion of these trends will undoubtedly lead to future large-scale
applications, carried out in a sustainable manner.
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Introduction
Within the organic chemistry community, photochemistry
has made significant recent impact, by introducing a
plethora of novel synthetic methods, which are driven by
irradiation of a component in the reaction mixture. This
can be the substrate itself, a metal [1] or organic [2]
photocatalyst, or an in situegenerated charge transfer
complex [3]. The implementation of synthetic photo-
chemistry can already begin to meet the aims of green

chemistry [4,5] through two main principles. Many
known disconnections can be achieved under milder
www.sciencedirect.com C
conditions, by using photons as a traceless reagent to
activate otherwise benign starting materials. Alternatively,
entirely new disconnections can be facilitated, which can

complete target-oriented syntheses in fewer steps, for
significant savings in resources, time, energy, and waste.

Photochemistry in batch is generally limited by poor
light penetration, therefore, scaling up to larger batch
reactors is generally impractical. Performing photo-
chemistry in continuous flow has been demonstrated as
a widely suitable method to carry out photochemical
reactions on larger scales. Consequently, there are
numerous reviews on flow photochemistry [6e9],
including more specific focuses on reactions toward

active pharmaceutical ingredient (API) synthesis
[10,11], reactor technology [12], and dual catalysis
methodologies [13].

This review will focus specifically on the developments
made over the past 3 years toward sustainable photo-
chemical processing in flow. The general benefits of flow
chemistry with respect to sustainable processing are
discussed in detail elsewhere [14,15], so will be avoided
here. It is also noteworthy that recently developed photo-
redox methodologies have not yet reached the stage of

production in the pharmaceutical industry. Although long
process development cycles and a lack of photochemical
retrosynthetic experience [16]maybepartly responsible, it
is also likely that scale-up and engineering issues are to
blame. In particular, poor sustainability profiles (e.g. low
reaction concentrations and the use of precious metal
catalysts) render most photochemical routes undesirable.
Accordingly, there are very few published examples of
modern flow photochemical processes on large scales. As a
result, this article will focus on laboratory-scale examples,
and the reader must bear in mind that these are often not

fully optimized for sustainable processing.

Within this article, the impact of three key elements of
flow photochemical processing will be considered: 1)
new light source technologies; 2) development of
reactor design; and 3) reaction understanding and
optimization for process intensification (Figure 1).
Owing to its short length, it is not possible to be
exhaustive in examples, so each of these points will be
illustrated with a small selection of case studies, which
demonstrate the key principles and their potential
environmental impact. The continuing developments in

these fields will increase the likelihood of flow photo-
chemistry being incorporated into production-scale
urrent Opinion in Green and Sustainable Chemistry 2020, 25:100351
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Figure 1

A summary of the topics discussed here and their potential impact on the 12 Principles of Green Chemistry.

2 Flow Chemistry
synthetic routes in the coming years, allowing the
enhanced sustainability profiles of photochemical
transformations to be fully realized.

Toward sustainable flow photochemistry
Light source improvements
Although often overlooked, especially by synthetic
chemists developing new methodologies, the light
source is, in many cases, the most important reactor

component. As highlighted by a recent synthetic
photochemistry commentary [17], many reactions
developed on small scales inevitably use suboptimal
light sources. In simple cases, UV/vis characterization of
the reaction substrate or photosensitizer can easily
determine the most suitable wavelength. Deeper un-
derstanding, however, can occasionally reveal mecha-
nistic considerations, which lead to improved reaction
conditions or alternative pathways.

Advances in light-emitting diode (LED) technology

confers that pseudo-monochromatic light sources in a
wide range of wavelengths are now available with good
efficiencies (~25e60% for wavelengths 365e525 nm)
[18]. This approach is far more energy-efficient than the
traditionally used polychromatic light sources (e.g.
pressurized mercury vapor lamps; Figure 2a) [18]. Using
an efficient monochromatic light source minimizes
energy losses in nonabsorbed light and, more impor-
tantly, in heat. When considering larger-scale processing,
light source cooling can potentially require more energy
than powering the light source itself. It has been esti-

mated that every decade, the cost per lumen from an
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LED light source has been falling by a factor of 10 as the
amount of light generated increases by a factor of 20. An
upward trend in efficiency is set to continue in coming
years, leading to further improvements in energy effi-
ciency [19].

In consequence, many traditional photochemical trans-
formations have now benefited from being performed
using LED light sources in place of pressurized mercury
vapor lamps. A prime example is benzylic bromination,
where efficient irradiation of Br2 (lmax z 395 nm) can

be targeted without also applying extraneous wave-
lengths [20e22]. Improvements in LED materials (e.g.
gallium-nitride) mean that shorter wavelength LEDs,
currently down to 365 nm, are available with high effi-
ciencies [23]. Therefore, an increasing variety of UV
photochemistries can now also be performed using
LEDs. This trend is set to continue, eventually allowing
access to high power deep UV LEDs for direct-
excitation photochemistries (e.g. singlet state rear-
rangements) [24].

The use of pseudo-monochromatic light sources has
allowed changes in reaction mechanism at different
wavelengths to be discerned. For example Tallarek et al.
[25] reported the wavelength-dependent perfluor-
oalkylation of an indole. A flow reactor was used in
combination with LED arrays of 16 different wave-
lengths, whereby different mechanisms could be
distinguished: eosin Y single electron catalysis, versus
activation via an EDA (electron donoreacceptor) com-
plex with either the substrate or an added base
www.sciencedirect.com
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Figure 2

Comparison of light sources used in flow photochemistry. a) Overlapping (relativized) emission spectra of a medium pressure mercury vapor lamp, with
a 405 nm pseudo-monochromatic LED. (b) Overview of the experimental setup and LED wavelengths examined for the wavelength-dependent
perfluoroalkylation of an indole [25]. Adapted from Ref. [25] with permission from The Royal Society of Chemistry.
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(Figure 2b). This in-depth study allowed discrimination
between multiple different reported mechanisms,
toward the most energy- and mass-efficient solution for
this specific case. A similar report by our group also
showed that the photocatalyst can be removed from an

iodoperfluoroalkylation reaction when operating with
wavelengths <420 nm [26].

Reactor design
Alongside the light source, flow reactor design plays a vital
role, and has also seen significant progress [12,27]. The
www.sciencedirect.com C
impact of 3Dprinting has beenof somenote, but generally
limited to ‘homemade’ laboratory-scale reactors, allowing
fast design and production of parts to hold and support
lamps, tubing-based reactors, and so on [28]. However,
dye-doped polymers have played an important role in the

development of luminescent solar concentrators (LSCs),
which act to harvest broad spectrum light and release it as
the desired wavelength toward the flow reaction channel
[29e31]. This allows significantly improved efficiency
and the opportunity to easily convert sunlight [32,33] to
the desired wavelength (Figure 3a).
urrent Opinion in Green and Sustainable Chemistry 2020, 25:100351
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Figure 3

Representative examples of reactor technologies at work in flow photochemistry. (a) Photoemissive dye encapsulated in plastic, forming the channels of
an LSC. (b) Vortex fluidic reactor used for photochemical oxidation, showing the reactor principle and the mixing within small vortices, calculated using
computational fluid dynamics (CFD). Adapted with permission from Ref. [38]. Copyright 2020 American Chemical Society. (c) A pulsator-assisted
oscillatory plug flow reactor, used to maintain and pump a reaction mixture containing a carbon nitride heterogeneous photocatalyst.

4 Flow Chemistry
Gases can often act as incredibly atom efficient reagents
and are well suited to flow processing [34]. In the realm
of photochemistry, oxygen is particularly prevalent,
because of its easily accessible singlet state, when
combined with a photosensitizer. Performing aerobic
reactions in flow is considered to be a far safer option
than batch, because of the low reactive inventory and
high explosive pressure tolerance [35,36]. As a result,
aerobic photochemistry in flow has been proven to be an

excellent match.

Indeed, many reports have taken advantage of aerobic
oxidation chemistry to demonstrate new reactor designs.
For example, in a vortex reactor, a central rotor is posi-
tioned within a sleeve, providing a small annulus, which
the reaction mixture is pumped through. As the central
rotor spins, small Taylor vortices are generated, impart-
ing intensive mixing as the material moves through the
reactor (Figure 3b).

Recent reports have demonstrated this on small scale
(1 mm annulus, 8 mL reactor volume) [37], before
increasing to a larger reactor (2 mm annulus, 280 mL
reactor volume) [38]. The initial report was limited to
using air drawn in from the laboratory, but when
performed in the larger reactor, oxygen was delivered
Current Opinion in Green and Sustainable Chemistry 2020, 25:100351
directly using a mass flow controller, which significantly
increased the throughput, providing productivity up to
almost 2 kg/day (Figure 3b). Owing to complex moving
parts, this type of reactor is limited to working at low
pressure, where oxygen solubility in the organic solvent
(ethanol) is low. It is yet to be seen, however, whether
this approach offers an improvement versus highly
pressurized reactors.

Another substantial goal toward greener photochemistry
is to circumvent the use of noble metal catalysts, such as
the commonly used iridium and ruthenium complexes.
Use of precious metals with very low abundance is
wasteful and detrimental to the Earth’s reserves.
Although organic photocatalysis has shown significant
promise [3,39], higher loadings are often required and
photobleaching during the reaction can be problematic.
Alternatively, semiconductor catalysis has also emerged
as a prominent field [40]. In particular, nanodots, such as
CdSe, and organic polymers, such as carbon nitrides

[41,42], have shown tremendous promise.

The implementation of these heterogeneous catalysts
presents further challenges for flow processingdwhich
is often considered by organic chemists to be incom-
patible with solids. The first carbon nitride-catalyzed
www.sciencedirect.com
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flow photochemical process was achieved using a highly
viscous reaction medium, combined with gas flow, to set
up a slug flow regime with internal mixing of the solid
photocatalyst [43].

We recently described the first use of an oscillatory plug
flow photoreactor to provide a stable suspension of
carbon nitride photocatalyst as it progresses through the

photoreactor (Figure 3c) [44]. Stable operation was
demonstrated over 5 h, yielding to 2.7 g/h of the desired
product. Furthermore, complete recyclability of the
carbon nitride photocatalyst was observed over ten
experimental cycles, reinforcing the enhanced sustain-
ability of this strategy. In a similar vein, a small contin-
uous stirred-tank reactor (CSTR) cascade has also been
reported for handling solids in flow photochemical re-
actions. However, this application focused on the use of
an insoluble inorganic base, which avoids requirements
for an expensive and unsustainable organic alternative

[45]. It must be noted, however, that handling of solids
in flow reactors requires optimization for each specific
system, because the properties of solvent and solids
(e.g. particle size, suspendability) varies significantly.

Process intensification
A key contributor to the aim of sustainable
manufacturing is that of process intensification. By
successfully intensifying a process, it is possible to
produce far more of a desired product using less solvent,
energy, space, and/or time [46]. A significant focus of

process intensification has been on reactor engineering
[47]; however, the development of novel chemistries
has urged further attention to be directed to the reac-
tion conditions themselves.

In photochemical processes, solvent use is a particular
issue, because a significant proportion of these reactions
Figure 4

Illustrated examples of intensified flow photochemical processes. (a) High pre
concentration. Adapted with permission from Ref. [49]. Copyright 2018 Americ
and concentration nickel/photoredox dual catalytic C–N coupling, with an exc
Ref. [51]. Copyright 2019 American Chemical Society.
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must be run at very low concentrations (in the milli-
molar range) to achieve selectivity for the desired
product. Adaptation of reaction conditions to a specific
flow reactor can facilitate this, because of shorter irra-
diated path lengths allowing homogeneous reaction
mixture irradiation. For example, recent work on the
flow photochemical rearrangement of provitamin D has
further developed high temperature and pressure con-

ditions to facilitate an increase in reaction concentration
from 30 [48] to 220 mM, corresponding to a sevenfold
decrease in solvent usage (Figure 4a) [49].

Another field of photochemistry that has recently been
the subject of intensive research is that of transition-
metal/photoredox dual catalytic methods [13,50].
Being a relatively new class of reactions, with multiple
catalytic species, the initially used reaction conditions
have generally been very poor from a sustainability
perspective. However, as the corresponding mechanistic

knowledge continues to grow, these transformations can
become increasingly intensified.

A process chemistry group from Abbvie demonstrated
the tuning of catalyst loading to enhance reaction rate in
an irradiated CSTR for a nickel/ iridium-catalyzed aryl
amination. By decreasing the loading of photocatalyst,
homogeneous irradiation of the solution was achieved,
leading to a maximized reaction rate. The optimal
catalyst loading was found to be 0.025 mol% whereby
1.54 kg of the desired product could be isolated using

only 2.2 g of iridium catalyst (Figure 4b) [51]. Although
the use of precious metal catalysts should be eliminated
where possible, this approach at least allowed a signifi-
cant reduction of wastage.

In addition to an optimized catalyst loading, increases in
the reaction temperature and concentration were also
ssure and temperature vitamin D3 production, facilitating higher reaction
an Chemical Society. (b) Laser CSTR reactor used for high temperature
eptionally low photocatalyst loading. Adapted with permission from

urrent Opinion in Green and Sustainable Chemistry 2020, 25:100351
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found to have a profound positive effect on reaction rate.
In general, photochemical transformations are assumed
to be light-limited, yet dual-catalytic protocols appear,
in some cases, to be accelerated using methods analo-
gous to standard process intensification techniques.
This was also exemplified by Buchwald et al. [52], who
demonstrated that increasing the reaction temperature
to 80 �C allowed complete reaction in residence times as

short as 10 min. Intensification of these, and related
protocols, will inevitably lead to increased adoption for
larger-scale processing.
Summary and outlook
It must be reiterated that the current state of flow
photochemistry is far from reaching maturity, partic-
ularly at production scale. Although significant ad-
vances are required before the Green benefits of
synthetic photochemistry can be fully exploited,
progress has undoubtedly been made in recent years.
As the interest of the synthetic and process chemistry
communities continue to grow, it is inevitable that
further opportunities will present themselves. This
will allow flow photochemistry to become an indis-
pensable tool in the Green chemist’s synthetic

arsenal.

The three main topics covered here demonstrate that
flow photochemistry is heavily reliant on other dis-
ciplines. Material scientists contribute through
development of light source technologies and chem-
ical engineering principles are invoked in the design
of improved reactors. The most significant input by
the chemist concerns the development of new
chemistries and optimization toward the most effi-
cient operating conditions. The enhanced under-
standing that underpins this development will

arguably be the area of greatest impact in the coming
years. With even more new transformations, and
enhanced understanding of current ones, flow
photochemistry will undoubtedly begin to influence
sustainable manufacture.
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